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1. Introduction

Mirror symmetry of Calabi-Yau manifolds has been understood to large extent for com-

plete intersections or hypersurfaces in toric ambient spaces. However a huge and much less

explored class of Calabi-Yau manifolds, with distinct low energy spectrum, can be realized

in ambient spaces, which are defined by other homogeneous spaces like the Grassmannians

G(k, n) = U(n)/(U(k) × U(n − k)). We will only deal with compact manifolds and denote

Calabi-Yau manifolds, which are complete intersections in Grassmannians as “Grassman-

nian Calabi-Yau manifolds” and such which are realized as complete intersections in toric

spaces as “toric Calabi-Yau manifolds.” The topological properties of spaces defined by the

complex actions of Lie groups are described in [1]. From the point of view of the 2-d linear

σ-model description of the ambient space [2] the difference is that the former have U(1)r

gauge symmetries, while the latter have non-abelian
∏

k U(Nk) gauge symmetries. The

proof that mathematicians [3] gave for the fact that the B-model calculation of the genus

zero amplitude counts worldsheet instantons on the mirror manifold W relies on localisation

w.r.t. the U(1)r action and the construction of mirror pairs by reflexive polyhedra. It has

not been extended to the non-abelian case, e.g. to Grassmannian Calabi-Yau. For higher

genus amplitudes such proofs are not in general available even on ordinary toric ambient

spaces, but there are some results on genus one amplitudes [4, 5]. In this article we explore

the physical mirror symmetry predictions in situations, where it is mathematically very

difficult to prove along the lines described above, namely for the higher genus amplitudes

on Grassmannian Calabi-Yau spaces. Nevertheless the physical integrality conditions on

the BPS invariants, defined in [6, 7] give strong consistency checks on our A-model mirror

symmetry predictions on these manifolds.

For genus zero the first steps in the B-model analysis for Grassmannian Calabi-Yau

spaces have been done in [8]. Since the usual construction of mirror pairs by reflexive

polyhedra does apply only to toric Calabi-Yau manifolds, the strategy of the authors is

to consider a conifold transition from a Grassmannian Calabi-Yau to a toric Calabi-Yau

manifold, apply Batyrevs mirror construction there and perform an inverse conifold tran-

sition back to a Grassmannian Calabi-Yau. This is reviewed in section 2.3. For technical

reasons we chose the new one parameter models, for which the mirror geometry and in

particular the Picard-Fuchs equations were found in [8]. We apply the methods developed

in [9 – 11] to the B-model. Notably the structure of the holomorphic and an-holomorphic

modular expressions in the amplitudes analyzed in [10] allows for a very effective recursive

integration of the holomorphic anomaly equations. This structure can be related to the tra-

ditional theory of holomorphic and anholomorphic modular forms of subgroups of SL(2, Z)

in the case of local mirror symmetry [12]. For the large moduli space of the Calabi-Yau

this formalism can be extended at least formally to the global case [13]. The automorphic

forms should be then associated to abelian varieties.

The direct integration of the holomorphic anomaly has to be supplemented with bound-

ary conditions to provide the solutions. We find that the gap condition at the generic

conifold divisor, where an S3 shrinks, found in [11] is present also in the Grassmannian

Calabi-Yau spaces and provides most of the information. Other boundary information is

– 2 –
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provided by the regularity at CFT points in the moduli space and places where lens spaces

S3/ZN shrink. The Picard-Fuchs equations of the one parameter Grassmannian Calabi-

Yau manifolds are considerably more involved than the ones for Calabi-Yau hypersurfaces

and complete intersections in toric manifolds. While the latter have always three regular

singular points in a P1 compactification, the former have many regular singular points.

One motivation for the investigation was to analyze the degeneration of the higher genus

amplitudes at these partly novel singularities and to see whether enough boundary condi-

tions can be found to solve the theory completely. In all one parameter cases, one has been

analyzed also in [14], we can use the methods described above to solve the model at least

to genus 5 and in many cases higher.

2. Calabi-Yau complete intersections in Grassmannians

In this section we introduce the Calabi-Yau intersections in Grassmannian, calculate their

topological data and review the mirror construction of [8].

2.1 Topological invariants of the manifolds

Compact Calabi-Yau manifolds M can be constructed by considering complete intersec-

tions in Kähler ambient spaces with positive Chern class. The first Chern class of the

complete intersections is controlled by the adjunction formula and we can choose appropri-

ate degrees of the complete intersection constraints so that c1(TM) = 0. We will calculate

the topological data of M by basic algebraic geometry. All necessary tools are reviewed

in [15, 1].

We restrict to complete intersections in smooth Grassmannians. In this way one finds

5 complete intersections M with h1,1 = 1. The ambient space will be denoted as G(k, n) =

(U(k) × U(n − k)), where U(n) are the unitary groups. For the complete intersection we

use the notation

(G(k, n)||d1, . . . , dl)
h1,1

χ . (2.1)

Here the degrees di of the Calabi-Yau intersection are given w.r.t. to the principal canonical

bundle Q of the Grassmannian, see below. In addition we give the Euler number χ as

subscript and the Picard number h1,1 as superscript. Of course, h3,0 = 1, hk,0 = 0 for

k = 1, 2 and h2,1 = −χ
2 + h1,1. Together with Poincaré and Hodge duality this fixes all

Hodge numbers of M . All necessary topological data, which fix the topological type of M ,

are calculated below using Schubert calculus.

Let us first give a closed expression for the Chern classes of Grassmannians following

Borel and Hirzebruch in [1]. Their method is based on an identification of Chern classes

with elementary symmetric polynomials or combinations of them, which we will summa-

rize here.

Let S{x1, · · · , xl} denote the set of elementary symmetric polynomials in the vari-

ables x1, · · · , xl. Then the integral homology H∗(G(k, n), Z) of the Grassmannian can be

identified with the quotient

S{x1, · · · , xn−k} ⊗ S{xn−k+1, · · · , xn}/I, (2.2)

– 3 –
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where I is the ideal generated by the symmetric power series in x1, · · · , xn without constant

term. Now, in this representation, the closed formula for the total Chern class reads

c(G(k, n)) =
n−k
∏

i=1

(1 − xi)
n

∏

1≤i≤j≤n−k

(1 − (xi − xj)
2)−1. (2.3)

Practically, in order to calculate the Chern classes, substitute each xl by hxl and make

a series expansion in h. Then, the i’s Chern class is given by the coefficient of hi which

can be expressed in terms of elementary symmetric polynomials σr, r ≤ i in x1, · · · , xn−k.

For example, we have

c1(G(k, n)) = −nσ1, (2.4)

c2(G(k, n)) =

((

n

2

)

+ n − k − 1

)

σ2
1 + kσ2.

The formula for the first Chern class shows that −σ1 is a positive generator of

H2(G(k, n), Z). Next, note that σr is (up to a possible sign) the r-th Chern class of

the canonical principal U(n− k)-bundle Q over G(k, n) and as such represents the class of

a hyperplane section. We have σ1 = −c1(Q), σ2 = c2(Q), σ3 = −c3(Q), . . ..

Finally, we are ready to write down the total Chern class of Calabi-Yau complete

intersections (G(k, n)||d1, . . . , dl)
h1,1

χ , l = k(n − k) − 3, d1 + · · · + dl = n:

c((G(k, n)||d1, . . . , dl)
h1,1

χ ) =
c(G(k, n))

(1 + d1c1(Q)) · · · (1 + dlc1(Q))
. (2.5)

Denoting by H the hyperplane σ1 , the topological invariants χ(M), c2(M) · H, H3

can be expressed through intersection numbers of the Grassmannian G(k, n). As an ex-

ample, we review the calculation of the Euler number. The Gauss-Bonnet formula gives
∫

M c3(M) = χ. Now, using the adjunction formula, this integral can be expressed through

an integral over the whole Grassmannian

χ(M) =

∫

M
c3(M) =

∫

G(k,n)
c3(M)

l
∏

i=1

diH =

∫

G(k,n)
c3(M)

l
∏

i=1

dic1(Q). (2.6)

Similarly, the other topological invariants are given by

c2(M) · H =

∫

G(k,n)
c2(M)c1(Q)

l
∏

i=1

dic1(Q), (2.7)

H3 =

∫

G(k,n)
c1(M)3

l
∏

i=1

dic1(Q). (2.8)

As all Chern classes of M are expressed through Chern classes of Q, which are Poincare

dual to the Schubert cycles of the Grassmannian, all invariants can at the end be expressed

through intersection numbers of Schubert cycles. These numbers can then be calculated

utilizing the Schubert calculus and Pieri’s formula. Denoting by σa the special Schubert

– 4 –
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cycle given by the indices a = (a, 0, · · · , 0) and by σb a general Schubert cycle with indices

b = (b1, · · · , bk), Pieri’s formula reads

σa · σb =
∑

bi≤ci≤bi−1
P

ci=a+
P

bi

σc. (2.9)

Note that in the above formula the index c1 must always be greater or equal to b1. For

further details we refer to [15].

We have performed the above steps and list the result for our Calabi-Yau complete

intersections in the appendix.

2.2 Plücker embedding

In order to describe the mirror of the complete intersections in Grassmannians it is useful

to have an embedding of the Grassmannian into the projective space. The Plücker map

provides such an embedding. It simply sends a k-plane Λ = C{v1, · · · , vk} ⊂ Cn to the

multivector v1 ∧ · · · ∧ vk.

Explicitly, in terms of the basis {eI = ei1 ∧ · · · ∧ eik}#I=k for ∧kCn, this map is given

by the data

p : G(k, n) → P(∧kCn) = P(n

k)−1,

Λ 7→ [· · · , |ΛI |, · · · ], (2.10)

where the |ΛI | are the determinants of all the k × k minors of ΛI of a matrix representa-

tive of Λ.

To describe this embedding algebraically we need to find a set of equations which cut

out the Grassmannian in P(n

k)−1, i.e. which define conditions on a multivector Λ ∈ ∧kV to

be of the form

Λ = v1 ∧ · · · ∧ vk. (2.11)

Some calculations show that this is equivalent to demanding

(i(Ξ)Λ) ∧ Λ = 0, (2.12)

for all Ξ ∈ ∧k−1V . Here, the map i(Ξ)Λ is defined by

〈i(Ξ)Λ, v〉 = 〈Ξ,Λ ∧ v〉 (2.13)

for all v ∈ V .

Now, a Calabi-Yau complete intersection is obtained by choosing hypersurfaces of

appropriate total degree in P(n

k)−1, such that their intersection with G(n, k) is a nonsingular

Calabi-Yau space.

– 5 –
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2.3 Mirror construction

A mirror construction for the above type of Calabi-Yau spaces was given in [8]. Here, we

will only sketch the method introduced there which is based on conifold transitions.

Let M be a Calabi-Yau complete intersection described by the Grassmannian G(k, n)

and hyperplanes Hi. As was shown by Sturmfels [16] a flat deformation of G(k, n) in

its Pluecker embedding leads to a Gorenstein toric Fano variety P (k, n) ⊂ P(n

k)−1. Now,

denote by M0 the intersection of P (k, n) with generic hypersurfaces Hi. This manifold has

a locus of conifold singularities which come from the singularities of P (k, n). Resolving

these by restriction of a small toric resolution of singularities in P (k, n) one obtains a

second Calabi-Yau M∗. M∗ is a complete intersection in a toric manifold and as such its

mirror construction is known. The remaining task is to find an appropriate specialization

of the toric mirror W ∗ for M∗ to a conifold W0 whose small resolution provides the mirror

W of M . This task was performed in [8] for the manifolds we will be dealing with in

this paper.

The above steps can be summarized in the following graph:

M - M0

conifold transition
- M∗

?

W � W0

conifold transition

� W ∗

?

�

3. The BCOV anomaly equation

In this section, the general procedure for solving the BCOV anomaly equation is reviewed.

The connection of the solutions to Gromov-Witten potentials is established which will allow

us to extract Gopakumar-Vafa invariants from a series expansion of these potentials.

3.1 Special geometry and the topological string

Here we review how the deformation space of the topological B-model carries the structure

of a special Kähler manifold which can be identified with the special Kähler geometry of

local Calabi-Yau moduli spaces. As is discussed in [9], infinitesimal deformations of the

topological B-model are parametrized by the chiral fields of charge (q, q̄) = (1, 1). These

are the marginal fields which are spanned by a basis φi for i = 1, · · · , n. In fact, the

– 6 –
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deformations span a complex manifold M of dimension n. We are interested in the ring

spanned by (φ0, φi, φ
i, φ0), where φ0 is the identity operator of charge (q, q̄) = (0, 0), and

φi are the charge (2, 2) fields and finally φ0 is the top element in the chiral ring of charge

(3, 3). These fields satisfy the following identities with respect to the topological metric

η(φi, φ
j) = 〈φiφ

j〉0 = δj
i ,

η(φ0, φ
0) = 〈φ0φ

0〉0 = 1. (3.1)

Here, 〈·〉0 denotes the topological correlation function on the sphere. The ring structure

is encoded in the so called Yukawa coupling, which is the three-point function on the sphere

Cijk = 〈φiφjφk〉0. (3.2)

Using the operator state correspondence one can define

|i〉 = φi|0〉, (3.3)

and the topological metric becomes

η(φi, φ
j) = 〈i|j〉 = δj

i . (3.4)

Finally, one can define a hermitian metric using the worldsheet CPT operator Θ,

gij̄ = 〈Θj|i〉. (3.5)

Now, moving around in the moduli space M, the space of states generated by the chiral

fields forms a holomorphic vector bundle V → M. It can be shown that its charge (0, 0)

subspace forms a holomorphic line bundle L over M and that the charge (1, 1) subbundle

corresponds to the line bundle L×TM. The charge (2, 2) and (3, 3) subbundles respectively

turn out to be duals of L×TM and L. These bundles are described through their covariant

derivatives which will be given in the following. On M one can define a metric, called

Zamolodchikov metric,

Gij̄ =
gij̄

g00̄

, (3.6)

which is Kähler with Kähler potential K = − log g00̄. The connections on L and TM are

now given by ∂iK and the metric connection Γi
jk for Gij̄ . The covariant derivative of a

section ξ ∈ Γ(Ln × TMm) is then given by

Diξ
j1···jm = ∂iξ

j1···jm + Γj1
ikξ

k j2···jm + · · ·Γjm

ik ξj1···jm−1k + n∂iKξj1···jm. (3.7)

In this picture, the Yukawa coupling is a symmetric rank 3 tensor with values in L2,

which furthermore obeys the constrains

∂l̄Cijk = 0, DiCjkl = DjCikl. (3.8)

Finally, for the curvature of the Zamolodchikov metric one obtains the relation

(Rij̄)
k
l = [Di,Dj̄ ]

k
l = CilmCīm̄k̄e

2KGmm̄Gkk̄ − δk
l Gij̄ − δk

i Glj̄ . (3.9)

– 7 –
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The equations (3.6), (3.8) and (3.9) define the so called special Kähler geometry.

A Calabi-Yau threefold can be defined as a Kähler manifold, which has a no-where

vanishing (3, 0) form Ω(z), depending on the complex structure deformations z. We denote

the mirror of M on which we evaluate the periods by W . One has simple formulas for

the Kähler potential K and the Yukawa couplings Cijk in terms of integrals over W .

In particular

e−K = i

∫

W
Ω ∧ Ω̄ =: (Ω, Ω̄) (3.10)

and

Cijk =

∫

W
Ω ∧ ∂zi

∂zj
∂zj

Ω . (3.11)

One can reduce these integrals to period integrals and ultimately to certain solutions of the

Picard-Fuchs equation as follows. First one chooses an integral symplectic basis {Ak, Bk},
k = 1, . . . , h2,1(W ) + 1 of three cycles in H3(W, Z), i.e. Ak ∩ Bl = δk

l such that all other

intersections are zero, see [17]. Then one chooses a dual basis {αl, β
k}, k = 1, . . . , h2,1(W )+

1 of three forms in H3(W, Z). It fulfills
∫

Ak αl = δk
l ,
∫

Bk
βl = δl

k, while all other pairings are

zero. One has (αl, β
k) = iδk

l , while again all other pairings are zero. Now we can expand

Ω(z) = Xk(z)αk − Fl(z)βl (3.12)

in terms of the periods Xk(z) =
∫

Ak Ω(z) as well Fk(z) =
∫

Bk
Ω(z).

To recover the period integrals over the basis {Ak, Bk} from the solutions of the Picard-

Fuchs equations we use special geometry and the typical degeneration of the periods at the

point of maximal unipotent monodromy. First we note that the Xk serve as homogenous

coordinates for the space of complex structures. As a consequence of Griffith transversality

F (0)(Xk) := 1
2XkFk(X

k) is homogenous of degree 2 in Xk and Fk = ∂XkF (0). F (0) is called

the prepotential. At the point of maximal unipotent monodromy we have

~Π =











∫

B1
Ω

∫

B2
Ω

∫

A1 Ω
∫

A2 Ω











=











F0

F1

X0

X1











= ω0











2F (0) − t∂tF (0)

∂tF (0)

1

t











=











ω3 + c ω1 + eω0

−ω2 − aω1 + c ω0

ω0

ω1











, (3.13)

where ω0 is the unique power series solution and ωk are solutions, which behave like

ω0(z) log(z)k at infinity. The Frobenius method gives a canonical basis of these solutions.

t = ω1

ω0
is the mirror map and in terms of the latter the prepotential looks as follows

F (0) = − κ

3!
t3 − a

2
t2 + ct +

e

2
+ finst(q) , (3.14)

where κ = H3, c = 1
24

∫

M c2 ∧ H, e = ζ(3)χ(M)
(2πi)3

and a = 1
2

∫

M i∗c1(H) ∧ H. All these

numbers are calculated on M using the formalism in section (2.1) and they fix the integral

symplectic basis on W completely.

– 8 –
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3.2 General solutions of the BCOV anomaly equation

The special geometry relations ∂̄iCjkl = 0 and DiCjkl = DjCikl allow us to integrate the

Yukawa coupling and its complex conjugate and express them through potential functions

Cjkl = DjDkDlF (0), Cj̄k̄l̄ = Dj̄Dk̄Dl̄F̄ (0). (3.15)

Here, F (0) is a C∞ section of L2 as Cjkl is such a section. Analogously, F̄ (0) is a C∞

section of L̄2. In the one moduli cases we are considering here equation (3.15) turns into

Czzz = DzDzDzF (0)(z, z̄), Cz̄z̄z̄ = Dz̄Dz̄Dz̄F̄ (0)(z, z̄). (3.16)

The genus one free energy suffers from a holomorphic anomaly first calculated in [19],

∂̄k̄∂mF (1) =
1

2
C̄ij

k̄
Cmij −

(

χ

24
− 1

)

Gk̄m. (3.17)

This equation can be integrated straightforwardly and one obtains

F (1)(z) = log
(

det(G−1)
1

2 e
K
2

(3+h2,1− 1

12
χ)|f1|2

)

, (3.18)

where the holomorphic ambiguity is of the form

f1(z) =
∏

i

∆ri

i

h21
∏

i=1

zci

i . (3.19)

Here the ∆i are the components of the discriminant and the constants ri and ci are deter-

mined from the boundary behavior. In case of the conifold component of the discriminant

∆con the constant rcon is universally given by 1
12 as was first pointed out in [21]. The ci

are fixed by requiring the boundary condition

lim
zi→0

F (1) = − 1

24
ti

∫

M
c2 · H. (3.20)

The higher genus generalization of the holomorphic anomaly is given through a recur-

sion relation, the BCOV holomorphic anomaly equation ([9]),

∂̄k̄F (g) =
1

2
C̄ij

k̄

(

DiDjF (g−1) +

g−1
∑

r=1

DjF (g−1)DiF (r)

)

, (3.21)

where the F (g) are C∞ sections of L2−2g.

The idea presented in [9] to solve this equation is to rewrite the right hand side as a

derivative with respect to ∂̄k̄

∂̄k̄F (g) = ∂̄k̄

(

1

2
Sij

(

DiDjF (g−1) +

g−1
∑

r=1

DiF (r)DjF (g−1)

))

−1

2
Sij ∂̄k̄

(

DiDjF (g−1) +

g−1
∑

r=1

DiF (r)DjF (g−r)

)

, (3.22)
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where Sij is implicitly defined through

C̄ij
k̄

= ∂̄k̄S
ij . (3.23)

Using the commutator

Rl
ik̄j = [Di, ∂̄k̄]lj = Gik̄δ

l
j + Gjk̄δ

l
i − C

(0)
ijmC̄ml

k̄ (3.24)

allows one to rewrite the second term in such a way that the ∂̄k̄ derivative acts directly on

the F (g). Then the holomorphic anomaly equations for g′ < g can be used iteratively to

generate an equation of the form

∂̄k̄F (g) = ∂̄k̄Γ
(g)(Sij, Si, S, C

(<g)
i1,··· ,in

), (3.25)

where Si, S and C
(<g)
i1,··· ,in

are defined through

C̄j̄k̄l̄ = e−2KD̄īD̄j̄D̄k̄S, Sī = ∂̄īS, Sj = Gjk̄Sk̄, C
(g)
i1,··· ,in

= Di1 · · ·DinF (g). (3.26)

A solution is given by

F (g) = Γ(g)(Sij , Si, S, C
(<g)
i1,··· ,in

) + f (g). (3.27)

where f (g) is the holomorphic ambiguity, which is not fixed by the recursive procedure.

The method we will use to fix this ambiguity genus by genus is to go to boundary points of

moduli space and use physical interpretation at those points to reconstruct the ambiguity

globally. However, it is important to note that the boundary information is not restrictive

enough to carry out the procedure up to genus infinity.

3.3 Topological limit and Gromov-Witten potentials

The topological limit of the free energy was introduced in [19]. In order to define it we first

have to introduce the normalized solutions of the Picard-Fuchs equation around the large

volume point in moduli space. As we are dealing with one parameter models, let these

be given by ω0(z) and ω1(z), which determines the mirror map to be t = t(z) = ω1(z)
ω0(z) .

With these notations we can now introduce the topological limit to be defined by the

following replacements,

Gzz̄ → dt

dz

dt̄

dz̄
, Kz → −∂z log ω0(z), F (g)(z, z̄) → F (g)(z), (3.28)

in the solution (3.27), giving

F (g)(z) = Γ(Szz(z), Sz(z), S, C(<g)
r ) + fg(z). (3.29)

This determines the F (g) to be holomorphic prepotentials and sections of L(2−2g). The

Gromov-Witten potential is given through this holomorphic prepotential by

Fg(t) = (ω0(z))2g−2F (g)(z)

= (ω0(z))2g−2Γ(Szz, Sz, S, C(<g)
r (z)) + (ω0(z))2g−2fg(z). (3.30)
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This function is the generating function of the Gromov-Witten invariants Ng(d) and its

expansion in terms of these is given by

Fg(t) =
χ

2
(−1)g

|B2gB2g−2|
2g(2g − 2)(2g − 2)!

+
∑

d>0

Ng(d)qd, (q = e2πit), (3.31)

where χ is the Euler number of the Calabi-Yau manifold and Bg is the gth Bernoulli number.

For applications to the enumerative problem of counting holomorphic curves and/or

the extraction of the physical content in terms of BPS states it is reasonable to switch to the

effective action point of view. From this point of view the series F (λ, t) =
∑∞

g=1 λ2g−2F(g)(t)

computes the following term in the effective N = 2 superpotential:

SN=2
1−loop =

∫

d4xR2
+F (λ, t), (3.32)

where R+ is the self-dual part of the curvature and λ is identified with the self-dual part

of the graviphoton field strength F+. Alternatively, this term is calculated by a one-loop

integral in a constant graviphoton background, where the particles running in the loop

are charged BPS states. The calculation is very similar to the ordinary Schwinger-loop

calculation and the result is

∑

g≥0

λ2g−2Fg(t) =
∑

g≥0

∑

k≥1,d≥0

ng(d)
1

k

(

2 sin
kλ

2

)2g−2

qkd. (3.33)

The ng(d) are the so-called Gopakumar-Vafa invariants and are integral.

4. The Grassmannian Calabi-Yau (G(2, 5)||1, 1, 3)1

−150

This Calabi-Yau manifold is obtained as a complete intersection of hypersurfaces in the

Grassmannian G(2, 5) as described in section (2). In our special case the Plücker embedding

is an embedding of G(2, 5) into P9 and equations (2.13) take the form

z23z45 − z24z35 + z25z34 = 0,

z13z45 − z14z35 + z15z34 = 0,

z12z45 − z14z35 + z15z34 = 0,

z12z35 − z13z25 + z15z23 = 0,

z12z34 − z13z24 + z14z23 = 0. (4.1)

Now, the Calabi-Yau (G(2, 5)||1, 1, 3)1
−150 is defined to be a smooth 3-dimensional Calabi-

Yau complete intersection of 3 hypersurfaces of degrees 1, 1 and 3 in P9 with G(2, 5). A

calculation shows that we have h1,1 = 1, h2,1 = 76 and χ(M) = −150.

4.1 Picard-Fuchs differential equations and the structure of the moduli space

The Picard-Fuchs operator is given by:

P = −18z − 360z2 + (−147z − 2106z2)θ + (−444z − 3969z2)θ2 (4.2)

+(−594z − 2916z2)θ3 + (1 − 297z − 729z2)θ4,
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z 0 α1 α2 ∞
ρ1 0 0 0 1/3

ρ2 0 1 1 2/3

ρ3 0 1 1 4/3

ρ4 0 2 2 5/3

Table 1: Indicials for (G(2, 5)||1, 1, 3)
1

−150
.

where θ = z d
dz . As one can read off, the discriminant is given by dis(z) = 1−297z−729z2.

The Yukawa coupling can be extracted from the Picard-Fuchs operator and its normaliza-

tion is determined by the intersection number H3 given in section 2. This procedure is

explained in [17] and the result for our particular example is

Czzz =
15

z3(1 − 11 · 33z − 39z2)
. (4.3)

We expect the solutions to develop logarithmic singularities around the points dis(αi) =

0, i ∈ {1, 2}. These indeed occur as can be seen from the possible solutions ρi of the indicial

equation, which fixes the leading power ρ in the local power series ansatz zρ
∑∞

n=0 anzn:

(ρ1, ρ2, ρ3, ρ4) = (0, 1, 1, 2). (4.4)

As explained in [18] degenerate indices of differential equations with regular singular points

require logarithmic solutions.

These points are known as the conifold-points of the moduli space. As is known

through the work of Strominger [20] at these points certain non-perturbative type II RR-

states become massless and integrating them out leads to singularities in the Wilsonian

effective action. Such a singularity occurs also in the free energies of the topological string,

as was first observed in [21], as these free energies calculate couplings of the four dimensional

effective field theory. While calculating genus g topological string amplitudes we will make

extensive use of the knowledge that such massless states exist to put restrictive bounds on

the holomorphic ambiguity.

Another special point in our particular moduli space is the point at infinity. Here the

Picard-Fuchs-operator develops the following indices: (ρ1, ρ2, ρ3, ρ4) = (1
3 , 2

3 , 4
3 , 5

3). The

Z3-symmetry at this point suggests that it is the enhanced symmetry point of a particular

Landau-Ginzburg orbifold model. Putting regularity conditions on topological string free

energies at this point gives us another bound on the holomorphic ambiguity and the re-

sulting Gopakumar-Vafa invariants will give us a consistency check whether our regularity

assumption was justified.

Finally, the structure of the singularities can be summarized in table 1.

4.2 g = 0 and g = 1 Gopakumar-Vafa invariants

In this section we summarize the calculations of the genus zero and one Gopakumar-Vafa

invariants for the Grassmannian. We will solve the Picard-Fuchs equation around the point

z = 0 and obtain the mirror map at this point.
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The normalized regular solution and the linear-logarithmic solution are

ω0(z) = 1 + 18z + 1710z2 + 246960z3 + 43347150z4 + · · ·

ω1(z) = log ω0(z) + 75z + 16497
2 z2 + 1257046z3 + 907324065

4 z4 + · · ·

}

(4.5)

The complexified Kähler modulus is defined through 2πit = ω1(z)
ω0(z) and the q-expansion

of the z-coordinate takes the following form:

z = q − 75q2 + 1539q3 − 60073q4 + · · · , (4.6)

where q := e2πit.

Now, we are able to determine the quantum corrected Yukawa coupling Kttt(t) at

z = 0. It is given by

(

1

ω0(z)

)2

Czzz

(

dz

dt

)3

= 15+ 540q + 100980q2 + 16776045q3 + 2873237940q4 + · · · . (4.7)

From these Yukawa couplings we can obtain the Gromov-Witten potential

Kttt(t) =

(

q
d

dq

)3

F0(t). (4.8)

The genus one invariants are obtained through the BCOV formula for the holomorphic

potential which is the topological limit of (3.18)

F (1)(z) =
1

2
log

{

(

1

ω0(z)

)3+h1,1− χ

12

(

dz

dt

)

dis(z)−
1

6 zc−1− c2·H
12

}

, (4.9)

where we determine c = 0 through the boundary behavior (3.20). As both zeros of the

discriminant describe conifold points , it appears with factor −1/12 in the logarithm.

Using the mirror map z = z(q) we finally obtain the genus one

Gromov-Witten potentials

FM
1 (t) = F (1)(z(q)). (4.10)

4.3 Higher genus GV-invariants

In this section we explain the recursive solution of the BCOV holomorphic anomaly equa-

tion found in [10] utilizing the polynomial structure of the partition functions. The topolog-

ical limits at certain points in the moduli space are calculated giving boundary conditions

on the holomorphic ambiguity.

4.3.1 Recursive solution of the BCOV equation

The general form (3.27) of the solution to (3.21) is not so useful for higher genus calculations

as the procedure to determine the anholomorphic part grows exponentially with the genus.

The situation can be improved once one notices that the terms appearing in the Feynman

graph expansion are not completely independent, as was first observed in [7]. Using these
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interrelations, in [10] a recursive procedure for the quintic was developed whose complexity

grows only polynomially with the genus.

The basic idea is to introduce two sets of generators, given by

Ak = Gzz̄θk
zGzz̄, Bk = eK(z,z̄)θk

ze−K(z,z̄), (4.11)

where θz = z d
dz . A short calculation shows

θzAk = Ak+1 − A1Ak, θzBk = Bk+1 − B1Bk. (4.12)

Noticing the relation e−K(z,z̄) = (Ω(z), Ω̄(z)), the Picard-Fuchs equation corresponding

to the Picard-Fuchs operator (4.2) can be rewritten in terms of the Bk

B4 = r1(z)B1 + r2(z)B2 + r3(z)B3 + r4(z), (4.13)

where the rk(z) are rational functions.

Furthermore, there exists a similar relation for the Ak. As was shown in [10] A2 is

given by

A2 = −4B2 − 2B1(A1 − B1 − 1) + θzlog(zCzzz)Tzz + r(z), (4.14)

where Tzz is defined through the Szz propagator

Tzz = −(zCzzz)S
zz, (4.15)

and r(z) is a holomorphic function to be specified later. Also the propagators are defined

up to holomorphic functions f and v

Szz =
1

Czzz

(

2∂log(eK |f |2) − (Gzz̄v)−1∂(vGzz̄)
)

= − 1

zCzzz

(

2B1 + 2
∂f

f
+ A1 −

∂v

v

)

.

We will make a choice of f and v, such that the invariant combinations eK |f |2 and

Gzz̄|v|2 remain finite around z = 0. The calculation is most conveniently performed by

taking the topological limit and we obtain v = z and f = 1. Therefore, Tzz takes the form

Tzz = 2B1 + A1 + 1. (4.16)

The rational function r(z) is obtained by taking the topological limit of both sides of

equation (4.14) and making the Ansatz

r(z) = c0 + c1
1

dis(z)
+ c2

z

dis(z)
. (4.17)

The coefficients ci are extracted by comparing both sides and we obtain

r(z) = −4

9
+

13

9(1 − 297z − 729z2)
− 282z

(1 − 297z − 729z2)
. (4.18)
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The two equations (4.14) and (4.13) show that the θz-derivative acts within the ring gen-

erated by A1,B1,B2 and B3. More precisely, we have the property

θz : C(z)[A1, B1, B2, B3] → C(z)[A1, B1, B2, B3]. (4.19)

Similarly, the action of the ∂z̄ derivative just adds two more generators to the above

polynomial ring, namely ∂z̄B1 and ∂z̄A1. This is because, as was shown in [10] as well as

in [14], one has the following identities

∂z̄B2 = (1 + A1 + 2B1)∂z̄B1,

∂z̄B3 = (A2 + 3B1 + 3B2 + 3A1B1 + 1)∂z̄B1. (4.20)

The next step will be to show that rewriting the holomorphic anomaly equations allows

us to rewrite the solutions in terms of polynomials in A1, B1, B2 and B3. In order to proceed

we first introduce the quantities P
(g)
n defined through

P (g)
n = (z3Czzz)

g−1znDn
zF (g) (n = 0, 1, 2, . . .). (4.21)

Under the assumption that ∂z̄A1, ∂z̄B1 are independent the BCOV equation

∂z̄P
(g) =

1

2
∂z̄(zCzzzS

zz)







P
(g−1)
2 +

(g−1)
∑

r=1

P g−1
1 P

(r)
1







(4.22)

can be translated into

0 = 2
∂P (g)

∂A1
−
(

∂P (g)

∂B1
+

∂z̄B2

∂z̄B1

∂P (g)

∂B2
+

∂z̄B3

∂z̄B1

∂P (g)

∂B3

)

,

∂P (g)

∂A1
= −1

2

{

P g−1
2 +

g−1
∑

r=1

P
(g−r)
1 P

(r)
1

}

.

This shows the polynomiality of the solutions. Performing the following variable change

u = B1,

v1 = 1 + A1 + 2B1,

v2 = −B1 − A1B1 − 2B2
1 + B2,

v3 = −B1 − 2A1B1 − 5B2
1 − A1B

2
1 − 2B3

1 + B1B2 + B3

−B1(r(z) + Tzzθzlog(zCzzz)),

one can furthermore obtain ∂
∂uP (g) = 0 which reduces the number of independent variables

to three. Notice that the above equations are generic for all kinds of one parameter models,

once r(z) is extracted from the truncation relation (4.14). The holomorphic anomaly

equation can now be solved recursively with the initial data P
(0)
3 = 1 and P

(1)
1 , given by

P
(1)
1 =

1

2

{

−A1 −
(

2 + h11 − χ

12

)

B1 − 1 − c2 · H
12

− θz(dis(z))

6 dis(z)

}

. (4.23)
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A nice way to perform the integration is given in [14].

However, the integration of the holomorphic anomaly still leaves us with the holo-

morphic ambiguity. The relation between the genus g free energy F (g), the holomorphic

ambiguity fg(z) and the polynomials P (g) is given by the following equation

F (g) = (z3Czzz)(1−g)P (g) + fg(z). (4.24)

The Gromov-Witten potentials are once again obtained through equation (3.30), where

one has to make the substitutions

A1 →
(dz

dt

)

θz

( dt

dz

)

, Bk → 1

ω0(z)
θk
zω0(z), (4.25)

in the polynomial solutions F (g) = F (g)(A1(z, z̄), Bk(z, z̄), z).

4.4 Holomorphic ambiguity and boundary conditions

Requiring regularity of Fg(t) at z = 0 and z = ∞, we parameterize the holomorphic

ambiguity through the Ansatz

fg(z) = a0 + a1z + · · · + a2g−2z
2g−2 +

c0 + c1z + · · · + c4g−5z
4g−5

dis(z)2g−2
. (4.26)

From this we see that the total number of unknown parameters is 6(g − 1) + 1 and grows

linearly in g.

One of the main conceptual problems of topological string theory on compact Calabi-

Yau is the determination of the holomorphic ambiguity. Boundary conditions may be given

through the effective 4d action, but also, in some cases, geometrical considerations can be

of use. For example, we can utilize the first few Ng(d) in the expansion of the Gromov-

Witten potential once they are known through geometrical calculations. Usually, one puts

the lower degree Gopakumar-Vafa invariants ng(d) to zero as they count the number of

genus g holomorphic curves in the Calabi-Yau. Once one knows that the ng(d) are vanishing

up a certain degree for a specific genus g, then one knows that they must be zero at least up

to the same degree for genus g + 1. This knowledge one can impose as boundary condition

for the Gromov-Witten potentials. As boundary conditions from physical considerations

are far more restrictive for higher genus calculations we will concentrate on these in this

paper. In order to fix the ambiguity we evaluate the Gromov-Witten potentials at special

points on the moduli space, where the physics is sufficiently well understood.

4.4.1 Expansion around the conifold points

Our model admits two conifold points and as was first observed in [11] each of them provides

us with a gap-like structure in the higher genus topological string amplitudes which in turn

impose 2g − 2 conditions on the holomorphic ambiguity.

In order to make use of the gap condition we have to compute the topological limit

around each conifold singularity. We denote the conifold singularity by c, i.e. in our case

c stands for either α1 = 1/54(−11 − 5
√

5) or α2 = 1/54(−11 + 5
√

5). In the following we
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will obtain a normalized set of solutions of the Picard-Fuchs differential equation. From

the index structure around the conifold (1), the existence of a logarithmic solution can be

deduced. Furthermore, we have solutions which start with si (s = (z−c), i = 0, 1, 2) which

we will denote by ωc
i (s). We normalize the logarithmic solution log(s)ωc

1(s) + O(s1) by

requiring ωc
1(s) = s +O(s2). The solution corresponding to the index ρ4 = 2 is normalized

to be of the form ωc
2(s) = s2 + O(s3). A suitable linear combination with ωc

1(s) and ωc
2(s)

allows us to choose the solution for the index ρ1 = 0 to be of the form

ωc
0(s) = 1 + O(s3). (4.27)

The mirror map can be now specified to be

kttc =
ωc

1(s)

ωc
0(s)

, (4.28)

where kt is a constant which for the moment we can set to one.

We solve the Picard-Fuchs equations over the ring Q[α]/dis(α) (which is indeed a field

as dis(α) is irreducible in Q[α]) and obtain the following results for the periods and the

mirror maps

ωα
0 (s) = 1 +

81

250
(435709 + 1060776α)s3 + O(s4)

ωα
1 (s) = s − 3

50
(3709 + 9126α)s2 +

3

25
(446957 + 1088046α)s3 + O(s4)

s(tα) = tα − 3

50
(3709 + 9126α)t2α +

3

50
(770597 + 1875852α)t3α + O(t4α) (4.29)

In order to regain the solutions around the points αi, i ∈ {1, 2} one has to substitute α by

αi. For more details about this method see [14].

The topological limits around the conifold points are obtained by making

the replacements

A1(s + c, s̄ + c̄) → (s + c)
d

ds
log

dtc
ds

, Bk → 1

ωc
0(s)

((s + c)
d

ds
)kωc

0(s) (4.30)

in the defining relation (3.30).

The gap condition of [11] now tells us

F(g)
c (tc) = (ω0(s))

2g−2F (g)
c (s) =

const.

t2g−2
c

+ O(t0c), (4.31)

for g ≥ 2. This provides us with (2g − 2) − 1 equations which are vanishing conditions

for the coefficients of 1
tic

(1 ≤ i ≤ 2g − 3). Actually, the condition is even stronger as there

exists a choice of the constant kt under which in all higher genus expansions the leading

term is of the form
|B2g|

2g(2g−2)
1

t2g−2
c

.

It is interesting to have a look at this gap structure in the expansions of Gromov-Witten

potentials once the holomorphic ambiguity is fixed completely,

F(2)
α (tα) =

41 − 12276α

874800t2α
+

−14874743 + 3442099023α

36450000
+ O(tα),

F(3)
α (tα) = −5(−15005 + 4493016α)

4821232752t4α
+ O(t0α). (4.32)
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Again, substitute α by αi to obtain the solutions around the specific vanishing point of the

discriminant.

4.4.2 Expansion around the orbifold point

The index structure (1) of the Picard-Fuchs operator suggests that the point at infinity is a

Z3 orbifold point. Therefore, we have to impose regularity of the free energies at this point

in the moduli space. To obtain the topological limits we follow a path of argumentation

presented in [14]. Let x be the coordinate at infinity, i.e. x = 1
z . Then we can define

F̃ (g)(x, x̄) to be the solutions of the BCOV equation in x-coordinates with initial conditions

F̃ (1)
1 (x, x̄) and F̃ (0)

3 = DxDxDxF̃ (0)(x, x̄). On the other hand these initial conditions are

related by

F̃ (0)
3 (x, x̄) = Cxxx(x) = Czzz

(

1

x

)(

dz

dx

)3

= F (0)
3

(

1

x
,
1

x̄

)(

dz

dx

)3

. (4.33)

From this we can infer that F̃ (g)(x, x̄) and F (g)(z, z̄) are in the same coordinate patch of a

trivialization of the line bundle L, which again gives

F̃ (g)(x, x̄) = F (g)

(

1

x
,
1

x̄

)

. (4.34)

Therefore, the topological limit at infinity is simply obtained by setting F̃ (g)(x, x̄) =

F (g)(A1(
1
x , 1

x̄), Bk(
1
x , 1

x̄), 1
x) and taking the limits

A1

(

1

x
,
1

x̄

)

=

(

dz

dx

dz̄

dx̄
Gxx̄

)

(−θx)

(

dx

dz

dx̄

dz̄
Gxx̄

)

→ −
(

dx

dt∞

)

θx

(

dt∞
dx

)

− 2 (4.35)

Bk

(

1

x
,
1

x̄

)

= eK̃(x,x̄)(−θx)ke−K̃(x,x̄) → 1

ω∞
0 (x)

(−θx)
kω∞

0 (x), (k = 1, 2, 3), (4.36)

where ω∞
0 (x), ω∞

1 (x) and t∞(x) =
ω∞

1
(x)

ω∞

1
(x) are the periods and mirror map at infinity.

So in order to proceed we have to calculate these quantities first. From the index

structure we have the following set of solutions, ω∞
0 (x) = x1/3 + O(x4/3), ω∞

1 (x) = x2/3 +

O(x5/3), ω∞
2 (x) = x4/3 +O(x7/3) and ω∞

3 (x) = x5/3 +O(x8/3). Using a linear combination

with ω∞
2 (x) we can fix the first solution to be of the form

ω∞
0 (x) = x1/3 + O(x7/3). (4.37)

Furthermore, the second solution can be fixed by taking a linear combination with the

third solution to

ω∞
1 (x) = x2/3 + O(x8/3). (4.38)

With these choices the relevant solutions are given by

ω∞
0 (x) = x1/3 +

x7/3

131220
− 67

51018336
x10/3 + O(x13/3),

ω∞
1 (x) = x2/3 − 2

45927
x83 − 467

55801305
x11/3 + O(s14/3),

x = t3∞ − 11

102060
t9∞ +

12599

595213920
t1∞2 + O(t1∞5). (4.39)
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z 0 α1 α2 ∞
ρ1 0 0 0 1/2

ρ2 0 1 1 1/2

ρ3 0 1 1 3/2

ρ4 0 2 2 3/2

Table 2: Indicials for (G(2, 5)||1, 1, 2)
1

−120
.

Using these data and the holomorphic limit discussed above we obtain the following

Gromov-Witten potentials

F(2)
∞ (t∞) =

41031
160 + a2

t4∞
+

1367
80 + a1

t∞
+ O(t∞),

F(3)
∞ (t∞) =

22453281
1600 + a4

t8∞
+

4572543
3200 + a3

t5∞
+

−121464319
567000 + a2 + 73a4

229635

t2∞
+ O(t∞). (4.40)

As the orbifold point is a conformal field theory point and thus has to be regular, we

see that demanding the vanishing of the coefficients of inverse powers of t∞ gives us g

conditions on the parameters of the holomorphic ambiguity.

Counting the number of boundary conditions from the orbifold and conifold points

one notices that they are not yet enough to fix the ambiguity completely. This is no

problem for lower genera as the vanishing of lower degree Gopakumar-Vafa invariants gives

us enough conditions to fix all free parameters. On the other hand, as mentioned earlier,

our example shows that there are not enough boundary conditions to solve the model up

to genus infinity.

5. Other models

We have analyzed three other Calabi-Yau complete intersections in Grassmannians, namely

(G(2, 5)||1, 2, 2)1
−120, (G(3, 6)|

∣

∣16
)1

−96
and (G(2, 6)||1, 1, 1, 1, 2)1

−116. All three admit interest-

ing new features and share common properties with the model analyzed previously. In

particular, we have found a lense space point in the moduli space of the second model.

5.1 (G(2, 5)||1, 2, 2)1
−120

The topological data of this Calabi-Yau are given by χ = −120, h2,1 = 61, h1,1 = 1,

c2 · J = 68. The Picard-Fuchs operator which was obtained in [8] has the index structure

shown in table 2.

and the Yukawa coupling is determined to be

Czzz =
20

z3(1 − 11 · 24z − 28z2)
. (5.1)

For the solutions around the conifold points we choose exactly the same normalization

as in the case of (G(2, 5)||1, 1, 3)1
−150. Looking at the point at infinity, we see that there are
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z 0 α1 α2 ∞
ρ1 0 0 0 4/3

ρ2 0 1 1 1

ρ3 0 1 1 1

ρ4 0 2 2 5/4

Table 3: Indicials for (G(3, 6)|
∣

∣16
)1

−96
.

two logarithmic solutions. In order to obtain the mirror map only the first two solutions

ω∞
0 and ω∞

1 are needed. They are of the form

ω∞
0 = x1/2 + O(x5/2),

ω∞
1 = log(x)x1/2 + O(x9/2), (5.2)

and we take the mirror map to be of the form t =
ω∞

1
(x)

ω∞

0
(x) .

With these conventions we calculate the expansions of the free energies around the

singular points of the moduli space. We find the same gap conditions as in the case of

(G(2, 5)||1, 1, 3)1
−150 around the two conifolds. The point at infinity turns out to be a

regular point as we have to impose regularity on the Gromov-Witten potentials in order to

obtain integral Gopakumar-Vafa numbers. We list the genus 2 and 3 expansions around

this point

F2
∞(t∞) =

51/4(136 + 3a2)

48
√

3t
1/4
∞

+

(

a1 +
−119464 − 4047a2

32000

)

+ O(t∞),

F3
∞(t∞) =

√
5(1024

3 + a4)

768
√

t∞
+

−28849664 + 144000a3 − 36423a4

460800
√

353/4t
1/4
∞

+ O(t∞). (5.3)

As one can see regularity restrictions give us g − 1 boundary conditions on the ambiguity.

5.2 (G(3, 6)|
∣

∣16
)1

−96

This Calabi-Yau has the topological data χ = −96, h2,1 = 49,h1,1 = 1, c2 · J = 84. Table

3 shows the index structure of the Picard-Fuchs operato [8].

The Yukawa coupling is given by

Czzz =
28

z3(1 − 26 · 22z − 27 · 24z2)
. (5.4)

The point at infinity admits one logarithmic solution which corresponds to a vanishing

cycle and it appears that it also admits some orbifold features. The mirror map is given

by t =
ω∞

1
(x)

ω∞

0
(x) , where

ω∞
0 = x3/4 + O(x7/4),

ω∞
1 = x + O(x2). (5.5)

An interesting feature of this model is the fact that the two vanishing points of the

discriminant, although having the same Picard-Fuchs-indices, behave differently when we
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analyze the Gromov-Witten potentials. In particular, the genus 1 Gromov-Witten potential

of this model is

F(1)(z) =
1

2
log

{

(

1

ω0(z)

)3+h1,1− χ

12

(

dz

dt

)

(−1 + z)−
1

3 (−1 + 64z)−
1

6 z−1− c2·H
12

}

. (5.6)

This suggests that the point z = 1 is not an ordinary conifold point but rather a lense

space point, that is a point, where a cycle C(for example S3) modded by a group G shrinks

to zero size. In the case of C = S3 G is a discrete subgroup of SU(2) and the resulting space

S3/G has fundamental group G. Spaces of this form where investigated in [22], where the

number of BPS states admitted by such cycles was calculated. There it was argued that

the number of D-brane bound states which are BPS is equal to the number of irreducible

representations of G and their mass is given by the formula Mi = µdi/G where µ is the

size of the unmodded cycle and di is the dimension of the ith irreducible representation of

G. Comparing this with the genus one free energy of the topological string one finds

F (1) =
∑

i

− 1

12
log(Mi) =

∑

i

− 1

12
log(µdi/G). (5.7)

In our particular example this is

F (1) = − 1

12
log(t1/64) −

2

12
log(t1). (5.8)

Using the identification t1 = µ/2 we find from the above formula that the group G must

be Z2. This also shows that two hypermultiplets are becoming massless at z = 1.

Our result is supported by the monodromy calculations made in [23]. There it was

found that the monodromy matrix at the point z = 1 is of Picard-Lefschetz form Sλ,v,

where λ = 2 which shows that this point is not an ordinary conifold point.

Higher genus calculations show that the ordinary gap condition holds at z = 1/64 which

is to be expected as this point is a conifold point. On the other hand the gap condition

has to be slightly modified around z = 1. If we assume that the two hypermultiplets

becoming massless are not interacting the modification to the leading term of the higher

genus Gromov-Witten potential reads as follows

Fg
1(t1) = 2

|B2g|
2g(2g − 2)

1

µ2g−2
+ O(t01) = 2

|B2g|
2g(2g − 2)

1

22g−2

1

t2g−2
1

+ O(t01). (5.9)

This is exactly what we observe.

It remains to be discussed the point at infinity. It admits a gap-like structure as can

be seen for example from the genus 4 expansion

F4
∞(t∞) =

7

240 t6∞
+

101797151

11010048000
t2∞ + O(t3∞). (5.10)

5.3 (G(2, 6)||1, 1, 1, 1, 2)1
−116

This manifold is characterized by the data χ = −116, h2,1 = 59, h1,1 = 1, c2 · J = 76. We

display the index structure of the Picard-Fuchs operator [8] in table 4.

– 21 –



J
H
E
P
0
1
(
2
0
0
9
)
0
2
9

z 0 α1 α2 ∞
ρ1 0 0 0 1/2

ρ2 0 1 1 2/3

ρ3 0 1 1 4/3

ρ4 0 2 2 3/2

Table 4: Indicials for (G(2, 6)||1, 1, 1, 2)
1

−116
.

The Yukawa coupling is given by

Czzz =
42

z3(1 − 65z − 64z2)
. (5.11)

The conifold locus is treated as usual. The mirror map at z = ∞ is obtained by taking the

ratio of the first two periods. They are of the form

ω∞
0 = x1/2 + O(x5/2),

ω∞
1 = x2/3 + O(x5/3). (5.12)

Now, our calculations show that the gap condition holds at the conifold locus. Fur-

thermore, the point at infinity at first sight seems to be a regular orbifold point with

Z6-symmetry and indeed this seems to be the case up to genus 3. But at genus 4 we

find that the expansion of the Gromov-Witten potential around this point is singular. In

particular we find

F4
∞(t∞) =

−8606402923
164640 + a6

t18∞
+

−500305024099
49787136 + a5 − 10

63a6

t12∞

+
−443407050538901893

179412923289600 + a4 − 20
189a5 + 831575

54486432a6

t6∞
+ O(t0∞), (5.13)

before fixing the ambiguity and

F4
∞(t∞) =

2

2187 t6∞
+

108172361

131681894400
+ O(t∞), (5.14)

after having fixed the ambiguity.

5.4 (G(2, 7)|
∣

∣17
)1

−98

This manifold is characterized by the data χ = −98, h2,1 = 50, h1,1 = 1, c2 · J = 84. The

index structure of the Picard-Fuchs operator [8] can be found in table 5.

We see that the Picard-Fuchs differential operator has the property of maximal degen-

eration at both z = 0 and z = ∞. It was found in [24] that the expansion about z = 0

corresponds to the Kähler moduli of the Grassmannian Calabi-Yau M = (G(2, 7)|
∣

∣17
)1

−98
,

and the expansion about z = ∞ to that of a Pfaffian Calabi-Yau M ′. In [14] the instanton

calculations for this model were extended up to genus 5 and we confirm their results for

low genus.
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z 0 α1 α2 α3 3 ∞
ρ1 0 0 0 0 0 1

ρ2 0 1 1 1 1 1

ρ3 0 1 1 1 3 1

ρ4 0 2 2 2 4 1

Table 5: Indicials for (G(2, 7)|
∣

∣17
)1

−98
.

6. Conclusions

In this paper we analyzed the topological string on five one parameter Calabi-Yau spaces

realized as complete intersections in Grassmannians. One result is that the gap condition

at the conifold that was discovered in local geometries in [12] and global geometries in [11]

is also present in the Grassmannian Calabi-Yau manifolds.

Since it involves subleading terms the gap condition is more than a local statement. The

fact that leading behavior of the Fg(tc) near the conifold point is given by the c = 1 string

is understood from the leading order local geometry of the nodal singularity [27, 26, 28]

and is true in any choice of the local coordinate system which has the right scaling behavior

of the complex structure parameterization. On the other hand the gap is sensitive to the

global embedding, because it is only true in the flat coordinates for the complex structure

parameters, whose form depends on global properties of the period integrals.

Unlike the toric one parameter Calabi-Yau the Grassmannian one parameter models

have usually several conifolds at various values of z in their moduli space and all these have

to fulfill the gap condition in order for the BPS invariants to be integer. In all cases we

found explicitly integer BPS numbers for the symplectic invariants up to genus 5, which

would be very interesting to confirm by methods of enumerative geometry.

We find that the model (G(3, 6)|
∣

∣16
)1

−96
has a conifold at z = 1

64 and a lense space

S3/Z2 shrinking at z = 1. We find that at the lense space singularity the analysis of the

leading terms is exactly as predicted in [22] and that in addition there is a full gap structure

in the subleading terms. The physical interpretation is that the two BPS states do not

interact and in particular do not form light bound states. This model has also at t∞ a

branch point of order 12, a single logarithmic solution and a full gap structure.

The models (G(2, 5)||1, 1, 3)1
−150, (G(2, 5)||1, 2, 2)1

−120 are regular at t∞ = 0 at least to

genus 5. The first has regular solutions, which hints a CFT with an Z3 automorphism at

t∞ = 0. In this model the BPS invariant n4
6 = 5 has been checked geometrically by Sheldon

Katz, who found also the vanishing of the BPS invariants for the other model in accord

with Castelnouvos Theory.

The model (G(2, 5)||1, 2, 2)1
−120 has two logarithmic solutions and a branch point of

order 2. It is conceivable that higher Fg are not regular at t∞ = 0.

The model (G(2, 6)||1, 1, 1, 1, 2)1
−116 has two different conifolds with a full gap structure.

At the point t∞ = 0 it has regular solutions with a Z6 branching. Curiously we find that

the integrality of the BPS require that it has singular behavior in the Fg for g > 3.
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For the Rodland example (G(2, 7)|
∣

∣17
)1

−98
, which has two points of maximal unipotent

monodromy we confirm the analysis of [14] for low genus.

Solving the topological string to all genus is important to study black holes in super-

gravity theories in four or five dimensions coming from type II- or M-theory compactifica-

tions on Calabi-Yau manifolds. e.g. for five dimensional black holes in N = 2 supergravity

theories with spin m and charge Q ∈ H2(M, Z) there is a microscopic prediction for the

entropy [7]

S(Q,m) = log

(

∞
∑

r=0

(

2r + 2

m + r + 1

)

ng(Q)

)

, (6.1)

where ng(Q) are the BPS that we can calculate now on the Grassmannian Calabi-Yau

manifolds. Note that we have h2(M, Z) = 1 and we denote the charge Q from now on, like

in the rest of the paper, by the degree d of the curve w.r.t. to the divisor H.

The macroscopic calculations of the entropy are valid in the limit d ≫ m. The N = 2

supergravity action has higher derivative corrections of the form F 2g−2
+ R2

+, where F+ and

R+ are the selfdual parts of the graphiphoton field strength and the curvature respectively.

The evaluation of Wald’s entropy formula for the uncorrected action yields

S0 = 2π
√

Q3 − m2, (6.2)

where Q is the graviphoton charge which is determined by the attractor mechanism in

terms of the triple intersection Q =
(

2
9H3

)
1

3 d [29]. The first correction yields [30]

S1 =
πc2 · H

8

(

6

H3

)
1

3 √

d3 − m2

(

1

d
+

m2

3d4

)

. (6.3)

Higher F 2g−2
+ R2

+ corrections are expected to be of the form Sg =
(∫

M c3

)

Q 3

2
−g. We can

now make a large d expansion of the total macroscopic entropy S = b0d
3

2 + b1d
1

2 +O
(

1

d
1
2

)

and compare the coefficients bi with the corresponding expansion of (6.1). So far this can

be done only numerically as the exact asymptotic of the BPS states is not known. It is

notable that the range of the topological data, which determine the bi, take more extreme

values for the Grassmannian Calabi-Yau spaces than for the toric Calabi-Yau spaces. In

particular c2 · H and the triple intersection H3 take the highest values of all known one

parameter Calabi-Yau spaces for the Grassmannian Calabi-Yau spaces. This makes the

latter a very useful extension of the sample used in [25] for comparing the semiclassical

and the microscopic description of black holes. Indeed we find that Richardson transforms

for the leading coefficient converge is within 4 % to the expected value of the macroscopic

calculation for all Grassmanian Calabi-Yau spaces discussed in this paper. For reference

we show one plot for the extreme value of H3 = 42 in appendix C. For the subleading

coefficient the agreement is within 10%. To summarize: The results of the numerical

analysis here are comparable to the results in [25], but now we have tested a more generic

sample, which gives further evidence for the microscopic state counting (6.1).
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A. Chern classes and topological invariants

G(2, 5) :

∫

G(2,5)
σ6

1 = 5,

∫

G(2,5)
σ2σ

4
1 = 3,

∫

G(2,5)
σ3σ

3
1 = 1,

(G(2, 5)||1, 1, 3)1
−150 : c((G(2, 5)||1, 1, 3)1

−150)

= 1 + (5c1(Q)2 − c2(Q))

−(8c1(Q)3 + 5c1(Q)c2(Q) − 5c3(Q)) + · · · ,

⇒ χ = −150, c2 · H = 66, H3 = 15.

(G(2, 5)||1, 2, 2)1
−120 : c((G(2, 5)||1, 2, 2)1

−120)

= 1 + (4c1(Q)2 − c2(Q))

−(4c1(Q)3 + 5c1(Q)c2(Q) − 5c3(Q)) + · · · ,

⇒ χ = −120, c2 · H = 68, H3 = 20.

G(2, 6) :

∫

G(2,6)
σ8

1 = 14,

∫

G(2,6)
σ2σ

6
1 = 9,

∫

G(2,6)
σ3σ

5
1 = 4,

(G(2, 6)||1, 1, 1, 1, 2)1
−116 : c((G(2, 6)||1, 1, 1, 1, 2)1

−116)

= 1 + (4c1(Q)2 − 2c2(Q))

−(2c1(Q)3 + 6c1(Q)c2(Q) − 6c3(Q)) + · · · ,

⇒ χ = −116, c2 · H = 76, H3 = 28.

G(3, 6) :

∫

G(3,6)
σ9

1 = 42,

∫

G(3,6)
σ2σ

7
1 = 21,

∫

G(3,6)
σ3σ

6
1 = 5,

(G(3, 6)|
∣

∣16
)1

−96
: c((G(3, 6)|

∣

∣16
)1

−96
)

= 1 + 2c1(Q)2

−(6c1(Q)c2(Q) − 6c3(Q)) + · · · ,

⇒ χ = −96, c2 · H = 84, H3 = 42.

G(2, 7) :

∫

G(2,7)
σ10

1 = 42,

∫

G(2,7)
σ2σ

8
1 = 28,

∫

G(2,7)
σ3σ

7
1 = 14,

(G(2, 7)|
∣

∣17
)1

−98
: c((G(2, 7)|

∣

∣17
)1

−98
)

= 1 + (4c1(Q)2 − 3c2(Q))

− (7c1(Q)c2(Q) − 7c3(Q)) + · · · ,

⇒ χ = −98, c2 · H = 84, H3 = 42.

– 25 –



J
H
E
P
0
1
(
2
0
0
9
)
0
2
9

B. Tables of Gopakumar-Vafa invariants

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 540 0 0 0 0 0

2 12555 0 0 0 0 0

3 621315 -1 0 0 0 0

4 44892765 13095 0 0 0 0

5 3995437590 17230617 -1080 0 0 0

6 406684089360 6648808835 921735 420 5 0

7 45426958360155 1831575868830 6512362740 -26460 -2160 0

8 5432556927598425 433375127634753 5837267557035 6528493485 218160 -2160

9 684486974574277695 94416986839804040 3061620003073095 20216637579465 6735865790 2770635

10 89872619976165978675 19571240651198871015 1223886411726167880 22818718255545315 85314971897190 5441786955

Table 6: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold

(G(2, 5)||1, 1, 3)
1

−150
.

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 400 0 0 0 0 0

2 5540 0 0 0 0 0

3 164400 0 0 0 0 0

4 7059880 1537 0 0 0 0

5 373030720 882496 0 0 0 0

6 22532353740 214941640 15140 0 0 0

7 1493352046000 37001766880 57840400 -800 0 0

8 105953648564840 5388182343297 36620960080 10792630 320 5

9 7919932042500000 715201587952800 12817600017680 33952864320 697600 -1600

10 616905355407694800 89732472170109248 3295335805457360 29386059424200 32052405340 -32320

Table 7: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold

(G(2, 5)||1, 2, 2)
1

−120
.

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 210 0 0 0 0 0

2 1176 0 0 0 0 0

3 13104 0 0 0 0 0

4 201936 0 0 0 0 0

5 3824016 84 0 0 0 0

6 82568136 74382 0 0 0 0

7 1954684008 8161452 0 0 0 0

8 49516091520 560512344 70896 0 0 0

9 1321186053432 31354814820 39198978 0 0 0

10 36729091812168 1568818990200 7239273552 1086246 0 0

11 1055613263065704 73339159104540 827701960638 932836632 1722 0

12 31184875579315920 3279169536538154 72679697259288 284870410986 55653752 0

Table 8: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold

(G(3, 6)|
∣

∣16
)1

−96
.
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d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 280 0 0 0 0 0

2 2674 0 0 0 0 0

3 48272 0 0 0 0 0

4 1279040 27 0 0 0 0

5 41389992 26208 0 0 0 0

6 1531603276 5914124 -54 0 0 0

7 62153423432 745052912 56112 0 0 0

8 2699769672096 73219520613 120462612 -5267 0 0

9 123536738915800 6326648922384 40927354944 4713072 840 0

10 5890247824324990 506932941439940 8145450103430 15699104736 -91464 -404

11 290364442225572848 38717395881042032 1228133118935408 8307363701728 4174512664 66640

12 14713407331980050400 2863231551878100494 156147718274297768 2460694451990694 7534787308968 991403118

Table 9: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold

(G(2, 6)||1, 1, 1, 1, 2)
1

−116
.

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 196 0 0 0 0 0

2 1225 0 0 0 0 0

3 12740 0 0 0 0 0

4 198058 0 0 0 0 0

5 3716944 588 0 0 0 0

6 79823205 99960 0 0 0 0

7 1877972628 8964372 0 0 0 0

8 47288943912 577298253 99960 0 0 0

9 1254186001124 31299964612 47151720 -1176 0 0

10 34657942457488 1535808070650 7906245550 325409 0 0

11 990133717028596 70785403788680 858740761340 956485684 -25480 3675

12 29075817464070412 3129139504135680 73056658523632 301227323110 27885116 73892

Table 10: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold

(G(2, 7)|
∣

∣17
)1

−98
.

d g = 0 g = 1 g = 2 g = 3

1 588 0 0 0

2 12103 0 0 0

3 583884 196 0 0

4 41359136 99960 0 0

5 3609394096 34149668 12740 0

6 360339083307 9220666238 25275866 1225

7 39487258327356 2163937552736 21087112172 22409856

8 4633258198646014 466455116030169 11246111235996 58503447590

9 572819822939575596 95353089205907736 4601004859770928 67779027822044

10 73802503401477453288 18829753458134112872 1586777390750641117 50069281882780727

Table 11: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Pfaffian Calabi-Yau threefold M ′.
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d g = 4 g = 5

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 25371416 3675

9 216888021056 33575388

10 521484626374894 1111788286385

Table 11: continued.

C. 5D blackhole asymptotic

AHd,0L

AHd,2LAHd,3L
AHd,4L

0 2 4 6 8 10
d

1

2

3

4

5

6
AHd,NL

GR27È1111111:leading

Figure 1: Leading behavior of the microscopic entropy for the 5d black hole for the Grassmannian

Calabi-Yau threefold (G(2, 7)||1, 1, 1, 1, 1, 1, 1)
1

−98
. A(d, m) are the Richardson transforms. The

Richardson transforms of the microscopic entropy converge within 4 % to the expected value from

the macroscopic calculation b0 = 4π

3

√
2H3

∼ .046 for H3 = 42. See [25] for more details of the method

for the numerical analysis.
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